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Basic interest rates

B(t,T): price attime t € [0, T] of a default-free zero coupon bond

f(t,T): instantaneous forward rate  (shortrate r(t) = f(t,t))
B(tT—exp( ft tudu)
L(t,T): default-free forward Libor rate for the interval Tto T + ¢

LTy =1 (st 1)

Fg(t,T,U): forward price process for the two maturities T and U

B(t, T
Fe(t,T.U) := g4}

B(t,T)
B(1,T +9)

= 145L(1T) = = Fa(t,T,T + 5)
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Bootstrapping of Initial Curves

The quoted overnight indexed swap rate (OIS) for a discrete tenor
structure 7 = {To, ..., Tn} with tenor 6 can be expressed in the form

on _ Bd(TO)_Bd(Tn)
SO eEm

Quotes of the swap rates are given for increasing maturities.

From the B$(Tx) we derive for each pair of consecutive dates
Tk—1, Tx € T the discretely compounded forward reference rates

_ 1 (By(Tk-1)
v mn =5 (Tt )



f— \
1
i
bR i) kY
it

@

Historical Evolution of the Tenor-Dependent FRA Curves



The Initial 6-month Curve

Start with its value at the maturity of six months by using the quoted
deposit rate RS™(0.5)

1

08 = 7555 A

For mid and long term maturities from one year upwards proceed by
bootstrapping. Use quoted swap rates based on a 6-month floating leg
according to

0.5 57en BY(TE™)L™(0, T&m,, T2)

ST T) = 5>, BY(T)

where

1 BBm(TGT)
L¥™(0, T™, T™) = IS L P
* 05<BSm<Tsm>

Values for the maturities of one and three months are added by using
rates of forward rate agreements
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The Driving Process

L= (L",...,L% is a d-dimensional time-inhomogeneous Lévy
process, i.e. L has independent increments and the law of L; is given by
the characteristic function

Elexp(i{u, Lt))] = exp /tes(iu) ds with
0
0s(2) = (z, bs) + 1§<z, CsZ) + /d (e<“> —-1-{z, x)) Fs(dx)

where b; e RY, ¢iis a symmetric nonnegative-definite d x d-matrix
and F; is a Lévy measure



Description in Terms of Modern
Stochastic Analysis

L = (L;) is a special semimartingale with canonical representation

t
L,:/ bsds+/ cl/2dW, + // (it — v)(ds, dx)
0 RA

and characteristics
t t
A,:/ bsds, C,:/ Cs ds, v(ds,dx) = Fs(dx)ds
0 0

W = (W;) is a standard d-dimensional Brownian motion,

u* the random measure of jumps of L and v is the compensator of .t
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The Basic Discount Curve (1)
(following Eb., Ozkan (2005))

Tenorstructure 7: 0< To<Thi<---<Th=T" withTy—Te_1=9

BZ(T): bond price at time t maturing at T
Ld(t, Tx—1, Tx): forward reference rate for the interval Tx_q to T
1 (BY(Tk_1)
Lot Tioq, Ti) 1= — | L1l 4
(7 k—1, k) (5( Btd(Tk) )
F9(t, Tx_1, Tx): forward price process for the maturities Ty_1, Tx

B (Ti-1)

Fo(t, Tuet, Ta) =
(6T, T) BY(Tx)

= Fd(t, Tk717 Tk) =1+ 5l_d(t, Tk,1, Tk)



The Basic Discount Curve (2)

Assumptions

(DFP.1) The initial term structure of bond prices BS(T) for T € [0, T*]
is given. This defines the starting values of the forward
processes

B5 (Ti-1)

BS(T«)

(DFP.2) For any maturity Tx_y € T there is a bounded, continuous and
deterministic function

FO0, Ti_1, Tx) =

A, Tiq) 1[0, T — RY.
We require that

A(t, Tee1) = (0,...,0) fort> Ti_q

~
4
=

| |
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Backward Induction (1)

We postulate

FO(t, Too1, Th)
t t
= F(0, To—1, To) exp (/ X(s, Tn_1)dLsT”+/ b(s, Tn_17T,,)ds)
0 0
where L™ = L™" is given in the form
t t
o :/ Ve WS +/ / x(u" — v’ )(ds, dx)
0 o Jrd

with PZ.-Brownian motion W' and compensator 7 (at, dx).

Choose the drift b%(-, T,_1, Tn) s.t. FO(-, To_1, T) becomes a
P4, -martingale

]
bo(t, Tooy, Tn) = —EAd(t, Too1)eX(t, Toot) "

- / d(e*"an”X 1\ Too)X)E (dx)
R



Backward Induction (2)

Define the forward martingale measure associated with T,,_4

dPf . FY(To_y,To, To)
dPg "~ F9(0, To_1, Tn)

By Girsanov’s theorem
t
Wit = W —/ VG N(s, To_1) ds
0

isa P§ _ -standard Brownian motion and

v=1(dt, dx) == exp(\Y(t, To_1)X)v" (dt, dx) = F"~" (dx)alt

defines the P -compensator of zi*.



Backward Induction (3)

Proceeding backwards along the tenor structure 7 one gets for each
ke{l,...,n}

Fo(t, T, Te)
t t
= F90, Te_1, Tx) exp (/ A(s, Ty_q)dLlk +/ b(s, Tk_1, Tk)ds)
0 0
where

t t
LTk :/0 \/ESdWsTk+/O /Rdx(uL—uTk)(ds,dx)

and the drift term is chosen s.t. FI(-, Ty_+, Tx) is a P, -martingale.



Multiple Term Structure Curves

Consider m tenor structures nested in 7

ThCc-cT'cT
T ={T,..., T}
0<Tg=To<Ti<  <Th=Th=T"

year fractions: &' = &'(T}_,, T}) independent of k
L(Ti 4, Ti): T, _,-spot Libor/Euribor rate

Define , 4 ' o ,
Lt Teey, Te) = B [L(Tees, Th) | 7

as the forward reference rate corresponding to &'.



Possibilities to Model the Spreads

(1) Additive forward spreads
Si(t’ T/i—‘]a T/i) = Li(ta Tl\{—17 Tli) - Ld(t7 T/i—1a Tl\l’)
or

(2) Multiplicative forward spreads

S/(t Ti TI) — 1 +5iLi(t7 Tli—17 /i) — 1 +6iLi(t7 Tli—17 TIL)
P KT S T, T Fa(t, Ti_,, Ti)

In the forward price framework the natural choice are multiplicative
spreads.

Lemma

U(,Ti_y,T)) isa P?kf -martingale

& ST Th) isa P?L ~-martingale



Model Variant (a)

Choose bounded, continuous, deterministic volatilities ~'(-, T, )
and postulate for each pair T;,_,, T, € T'

Si(ty Tlif‘la Tli) ¢ ) ¢
— S0, Ti_y, T) exp ( / A (s, Th_y )Ll + / bi(s, Tk’,1)ds)
0 0

where b'(-, T;_4) is chosen s.t. S'(-, Ty, T;) isa P%, -martingale
k—1

— maximum of tractability

basic forward reference rate as well as the §'- forward rates
can become negative (the initial rates can be negative)

multiplicative spread not necessarily > 1



Model Variant (a) Continued

We get the following explicit form for the §'-forward rate

1+ 0L Ty, Te) = S'(t, Ty, TOF(E Tiy, T)

L ) ) t ) ) i

= (1480, Ti 1, Th)) exp (/ [ X8, Timt) +9/(s. Tay)] dLgk
0 . .

j€dy

te . . . : .
o [ T+ (/s Th) Wi, i, Th)
0

+ ) [(A(s, Tia), w(s, T, Ta)) + b%(s, 7}1,7})”ds>.

jedl,



Model Variant (b)

Choose again volatilities 7/(-, 7;_,) as before and postulate for each
pair T, _{, T} € T'

S'(t, Ti, Te) — 1
§(0, 7] . T)) 1

t j T, L i
= e /0 5(s. Th_y )Ll + / B(s. Ti1)as)

where
7 i _ 1y i i i \T
b(t, Tx_1) = —57 (t, Tker)eey (t, Te—q)

= [ (€Tt 5 T xR (o).

R

— reasonable tractability
multiplicative spread is > 1



Calibration

Pricing formula for caps with tenor length 6': T +6' = T

Cpl(t, 7,6, K)
= 0B/ (TES [ (L(T. T~ K) | A
= BY(TOES [ (1+ LT, T.T) ~ (1 +6'K)) " | A
= BY(TES, [(FU(T. T, T)S(T. T, T) - K') " | 7

= BI(T)(Z) "B (25 (F(T. T, TS(T, T, T) - k') | 7]



Calibration Continued

Assumption: volatility functions are decomposable
M, T) = X(T)A()

and
F(t,T) =7 (T)AD)

-
Define X7 := / A(s)dL{

0
= Cpl(0, T,d,K) = BI(Tx) EL.[f'(X7)]  for a function £&”

Applying the Fourier-based approach one gets

d oo N
Cpl(0, 7,48, K) = M/ Re (ox; (u — iR) £'(iR — u)) du
0

™



Calibration Results

(a) Model (a) (b) Model (b)

Figure: Calibrated Volatility Surfaces on September 15, 2016
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