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Introduction
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Motivation

In the past decades affine processes have become the
workhorse for interest rate models due to their positivity and
tractability for the term structure of yields.

However they usually do not allow for the short rate to stay at
the ZLB [except Monfort et al. (2017)].

The alternative shadow rate models are not tractable for
pricing.
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What we do

This paper proposes models compatible with the ZLB.

The model is non affine, but is tractable for derivative pricing.

The modelling is based on an endogenous Markov chain.

The model is quite flexible, i.e. the Markov chain has different
regimes for the ZLB and non-ZLB states.
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The model
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Denote by

Factors Xt = (rt, Yt), where rt is the short rate, Yt is the
factor(s) driving longer term rates.

Regimes Zt = (1rt>0, St), where St is latent, and can take S
different values. In other words there are in total 2S regimes.

They are defined alternately:(
rt−1
Yt−1

)
−→

(
1rt>0

St

)
−→

(
rt
Yt

)
−→

(
1rt+1>0

St+1

)
−→

(
rt+1

Yt+1

)
.

In particular, if 1rt>0 = 0, then rt is zero, that is the ZLB.

We also assume that each variable depends only on its nearest left
neighbor.
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The conditional distribution

The conditional distributions are characterized by:

The conditional density of Xt = (rt, Yt) given
Zt = (1rt>0, St):

αj,s(xt) = αj,s(rt, yt), j ∈ {0, 1}, s ∈ {1, ..., S},

or stacked in a vector: α(xt) =

(
α0(xt)
α1(xt)

)
.

The vector of conditional probabilities of Zt given Xt−1:

β(xt−1) =

(
β0(xt−1)
β1(xt−1)

)
,

where β0(xt−1) ∈ RS , sums up to P[rt = 0|Xt−1].

We can show that both (Xt) and (Zt) are Markov, and (Zt) is
called the Embedded Markov chain (EMC).
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The transition distribution of (Xt) resembles that of a standard
Markov chain:

Proposition

f(rt+1, yt+1|rt, yt) = β′(rt, yt)α(rt+1, yt+1),

f(rt+h, yt+h|rt, yt) = β′(rt, yt)Π
h−1α(rt+h, yt+h), ∀h ≥ 1,

where Π =

∫
α(r, y)β′(r, y)dµ(r, y)

=

[ ∫
α0(0, y)β′0(0, y)dy

∫
α0(0, y)β′1(0, y)dy∫

α1(r, y)β′0(r, y)dµ(r, y)
∫
α1(r, y)β′1(r, y)dµ(r, y)

]
:=

[
Π00 Π01

Π10 Π11

]
∈M2S(R),

is the transition matrix of the Markov chain (Zt).
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Duration analysis

We want to answer:

If the economy is at the ZLB (rt = 0), when will we leave?

If rt > 0, when will we entering into ZLB?

Moreover, how do these predictors depend on the current
term structure?
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Closed form survival probabilities

We have:

Proposition

For each horizon h,

S00(h, yt) = P[rt+h = · · · = rt+1 = 0|1rt=0 = 1, yt]

= β′0(0, yt)Π
h−1
00 1S

S11(h, rt, yt) = P[rt+h > 0, · · · , rt+1 > 0|1rt=0 = 0, rt, yt]

= β′1(rt, yt)Π
h−1
11 1S ,

In particular the two probabilities depend on different block
matrices Π00 and Π11.
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Risk neutral dynamics

Let us specify the Q-dynamics via the stochastic discount
factor (SDF).

Remind that in the affine framework, under an exponential
affine change of measure, Q-dynamics is still affine.

We will see that similarly for EMC models, the Q-dynamics is
still EMC.
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SDF

The SDF mt+1 between dates t and t+ 1 should satisfy:

EP
t [mt+1] := Et[mt+1] = exp(−rt)

One multiplicative specification compatible with this constraint is:

mt+1 =
exp(−rt)κ(rt+1, yt+1)

Et[κ(rt+1, yt+1)]
=

exp(−rt)κ(rt+1, yt+1)

β′(rt, yt)
∫
κα

,

where κ(·, ·) is any positive function.
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Risk neutral dynamics

Proposition

The Q−dynamics is still Markov with EMC:

f∗(rt+1, yt+1|rt, yt) = [β∗(rt, yt)]
′α∗(rt+1, yt+1),

with:

α∗j,s(rt+1, yt+1) =
κ(rt+1, yt+1)αj,s(rt+1, yt+1)∫

καj,s
,

β∗j,s(rt, yt) =
βi,s(rt, yt)

∫
καj,s

β′(rt, yt)
∫
κα

, ∀j ∈ {0, 1}, s ∈ {1, ..., S}.

In particular, “insurance” with payoff 1rt+1=rt+2=···=rt+h=0 or
1rt+1>0,··· ,rt+h>0 can be priced in closed form.
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Bond pricing

Proposition

The zero-coupon bond price is:

B(t, h) = E[mt+1 · · ·mt+h|rt, yt] =
e−rtβ′(rt, yt)

β′(rt, yt)
∫
κα

Mh−1
1

∫
κα

where the (2S × 2S) matrix M1 is given by:

M1 =

∫
e−r

κ(r, y)α(r, y)β′(r, y)

β′(r, y)
∫
κα

dµ(r, y)

Thus computing the term structure for t, h varying amounts
to computing M1.

We can show that its largest eigenvalue ρ < 1, and the
long-run interest rate is − log ρ, which is positive.

14 / 19



Bond pricing

Proposition

The zero-coupon bond price is:

B(t, h) = E[mt+1 · · ·mt+h|rt, yt] =
e−rtβ′(rt, yt)

β′(rt, yt)
∫
κα

Mh−1
1

∫
κα

where the (2S × 2S) matrix M1 is given by:

M1 =

∫
e−r

κ(r, y)α(r, y)β′(r, y)

β′(r, y)
∫
κα

dµ(r, y)

Thus computing the term structure for t, h varying amounts
to computing M1.

We can show that its largest eigenvalue ρ < 1, and the
long-run interest rate is − log ρ, which is positive.

14 / 19



Some illustrations
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Term structure at the ZLB, with S = 3
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Term structure outside the ZLB
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Conclusion

We have proposed an alternative to the affine term structure
models that inherits the tractability of the latter, but is

compatible with the ZLB

flexible to distinguish the ZLB and non-ZLB state.

Next step: estimate the model using bond prices.

18 / 19



Q dynamics

The risk-neutral conditional density of process (rt, yt) is:

f∗(rt+1, yt+1|rt, yt) =
mt+1f(rt+1, yt+1|rt, yt)∫

mt+1f(rt+1, yt+1|rt, yt)dµ(rt+1, yt+1)

=
κ(rt+1, yt+1)β

′(rt, yt)α(rt+1, yt+1)

β′(rt, yt)
∫
κα

.
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