Institutional Crowding and Momentum Tail Risk

Pedro Barroso¹ Roger M. Edelen² Paul Karehnke³

¹University of New South Wales

²Virginia Tech

³ESCP Europe

12th Financial Risks International Forum 2019

Paris, March 18th

Background

Theory: Arbitrage without coordination

- \Rightarrow Random & occasionally severe crowding (especially with feedback effects)
- \Rightarrow bubbles and crashes

Background

Theory: Arbitrage without coordination

- ⇒ Random & occasionally severe crowding (especially with feedback effects)
- \Rightarrow bubbles and crashes
- Abreu and Brunnermeier [2003] Arbitrageurs may ride a bubble (destabilize) rather than trade against it (stabilize) if they cannot coordinate its popping.
- Stein [2009]

Unanticipated competition in an unanchored can do more harm than good (decreased pricing efficiency).

• Both settings fit a momentum investment strategy well.

Implication: Many authors have conjectured that crowding could explain momentum crashes*

• Piazzesi and Schneider [2009], Chabot et al. [2014], Barroso and Santa-Clara [2015], Lou and Polk [2013], Huang [2015].

*Momentum is known to be a crash-prone strategy, see e.g. Daniel and Moskowitz [2016]. Theory: Careful treatment of equilibrium crowding effects

- Stein [2009] restricts the momentum strategy space to linear (myopic) beliefs; predicts feedback effects / destabilization;
- We use rational beliefs (fixed point in price) and get a very different conclusion:
 - nonlinear demands,
 - no predicted feedback effects or destabilization.

Empirical:

- Previous studies use returns-based approaches to infer crowding.
- We use institutional holdings to form direct proxies. If anything, crowding inversely relates to momentum toxicity.

Initial conditions

- Homogeneous information; everybody holds the market.
- Three investor types: informed; momentum, and counterparty. All are risk averse and capital constrained.
- Three stock types: winner; loser; or neutral.

Two periods

- Portfolio formation period
 - Informed investors observe noisy signal of all stocks' type.
 - Market clears in a call auction.
- Evaluation period
 - Stock values are realized.
 - Information and holdings revert to a homogeneous state.

Setting

Informed investors

• Observe private signal of dividends for winners ($\delta/2$) and losers ($-\delta/2$).

• Realized dividends add a noise component, ϵ ;

 \Rightarrow Informed leave some expected value on the table.

Momentum investors

No private signals, but form E_M (δ|f) conditioning on f, the formation-period return differential, winners minus losers;
 ⇒ Pick up some of the value informed investors leave behind.

Setting

Informed investors

• Observe private signal of dividends for winners ($\delta/2$) and losers ($-\delta/2$).

• Realized dividends add a noise component, ϵ ;

 \Rightarrow Informed leave some expected value on the table.

Momentum investors

No private signals, but form E_M(δ|f) conditioning on f, the formation-period return differential, winners minus losers;
 ⇒ Pick up some of the value informed investors leave behind.

We refer to

- δ as the "fundamental value" and
 - f as the "price" of the momentum portfolio.
- $m = \delta f$ is the momentum return (disregarding ϵ)

key variables

• Third investor type: Counterparty investors

- Myopic beliefs: trade against deviation from historical value.
- Essentially noise traders who facilitate market clearing.

Preferences and the investment opportunity set

CRRA

- Risk capacity proportional to wealth.
- Essentially treat every dollar equally to give content to crowding.

CRRA

- Risk capacity proportional to wealth.
- Essentially treat every dollar equally to give content to crowding.
- Three assets:
 - Market portfolio
 - Momentum portfolio
 - A risk-free investment.

 \leftarrow what we care about

Demands

• Investor i's demand for the momentum portfolio is

$$\frac{E_{type(i)}[m+\epsilon]}{\gamma Var_{type(i)}[m+\epsilon]}K_{i}.$$

Demands

• Investor i's demand for the momentum portfolio is

$$\frac{E_{type(i)}\left[m+\epsilon\right]}{\gamma Var_{type(i)}\left[m+\epsilon\right]}K_{i}.$$

• Beliefs of the three investor types:

$$E_{I}[m|\delta, f] = \delta - f, \qquad Var_{I}[m|\delta, f] = \sigma_{\epsilon}^{2};$$

$$E_{M}[m|f] = \delta^{E} - f, \qquad Var_{M}[m|f] = \delta^{V} + \sigma_{\epsilon}^{2};$$

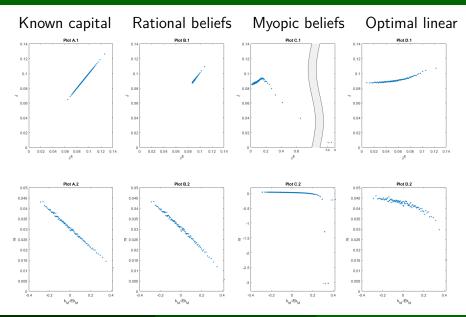
$$E_{C}[m|f] = -f, \qquad Var_{C}[m|f] = \sigma_{\delta}^{2} + \sigma_{\epsilon}^{2}.$$

• Solve for Momentum investors' beliefs.

(δ^{E} & δ^{V} : shorthand for momentum expectation and variance)

We consider 4 cases for momentum investors' beliefs.

- Known capital (yields linear beliefs)
- Rational beliefs:

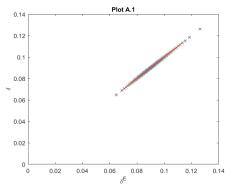

Conjecture a relation between f and d that generates demands that cause f to relate to d as conjectured.

• Myopic beliefs:

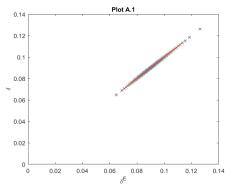
Unknown capital, but that uncertainty is ignored (follow a linear strategy, as above)

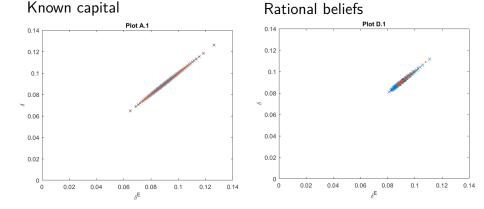
• Optimal linear:

Grid search over linear slopes to maximize the average utility in 100,000 simulations.



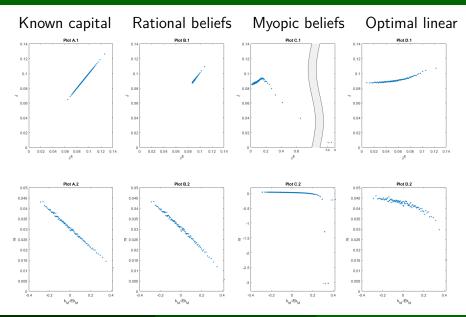
Barroso, Edelen and Karehnke


Crowding and Tail Risk


11 / 24

Known capital

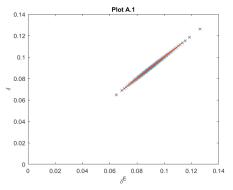
Known capital

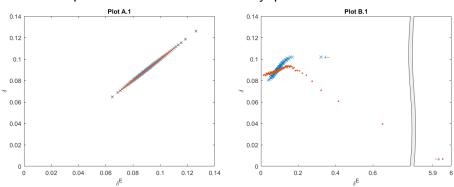


Barroso, Edelen and Karehnke

Crowding and Tail Risk

11 / 24




Barroso, Edelen and Karehnke

Crowding and Tail Risk

12 / 24

Known capital

Myopic beliefs

Known capital

Simulated momentum returns

Belief spec.	known	rational	myopic	optima linear
λ^{-1}			1.50	1.12
	Expected	momentur	n returns <i>m</i>	
mean	3.0%	3.0%	-2.4%	4.2%
stdev	1.4%	1.6%	174.2%	2.0%
skew	0.6	0.4	-151.3	-0.3
kurt	3.1	3.0	29218.7	10.8
min	0.05%	-2.55%	-38957.17%	-53.10%
max	10.26%	11.53%	13.16%	13.28%
F	Realized m	omentum r	eturns $m + \epsilon$	
mean profit	3.65%	3.44%	-4863.08%	0.65%
cer(2)	2.62%	2.53%	-100.00%	0.74%
cer(4)	1.30%	1.25%	-100.00%	0.37%
cer(10)	0.52%	0.50%	-100.00%	0.15%

- There is a theoretical basis for crowding-induced momentum crashes...
 - ... if and only if momentum investors hold myopic beliefs.
- Momentum returns negatively relate to realized crowd size.

Proxies for momentum investing from 13-F data

- Assess institution *i*'s trading in quarters q 3 through q for alignment with a momentum strategy
 - GTW: Correlation with prior quarter returns
 - BEK: Net trading in the now-standard 12-1 momentum portfolio
- If all 4 quarters align, i, q is a momentum investor (in qtr. q)
- Crowd measure:
 - Primary: #Institutions labeled a momentum investor
 - Cap: Their assets under management
- We also consider 1qrt measures requiring no consistency in strategy.

Transition probabilities: Momentum investors and stocks

Institutions' type									
			probabili	ties		likelihood			
		q+1	q+4	All q		q+1	q+4		
GTW_1qtr		0.54	0.54	0.45		1.20	1.19		
GTW_4qtr		0.71	0.34	0.10		7.05	3.32		
$BEK/BEKcap_1qtr$		0.57	0.56	0.49		1.17	1.16		
$BEK/BEKcap_4qtr$		0.71	0.31	0.12		5.99	2.62		
		St	ock retu	ırns					
		q+1			q+4			All	
	Win.	mid	Los.	Win.	mid	Los.			
Winner	0.56	0.42	0.02	0.16	0.60	0.23		0.13	
mid	0.08	0.82	0.09	0.12	0.74	0.14		0.67	
Loser	0.02	0.33	0.65	0.17	0.52	0.31		0.19	

Presentation focuses on crowding measures constructed using four-quarter trading.

Barroso, Edelen and Karehnke

Crowding and momentum returns

- Three specifications of the crowding variables:
 - $\Delta Crowd_q$ is the change in the variable.
 - Crowd_{q-1} is the level of variable.
 - $\hat{\sigma}_{Crowd}$ is the GARCH(1,1) volatility of residual crowding.
- We control for known predictors of momentum returns:
 - Dynamic betas [Grundy and Martin, 2001].
 - Momentum's volatility computed with daily returns in the previous quarter [Barroso and Santa-Clara, 2015, Daniel and Moskowitz, 2016].

Crowding and momentum returns

The dependent variable is the quarterly return of momentum.

Model:	cun	cumulative returns			d	3	
Measure:	GTW	BEK	BEKcap		GTW	BEK	BEKcap
$\Delta Crowd_q$	-0.29	-0.41	-0.27		-0.33	-0.44	-0.22
•	(-1.4)	(-2.1)	(-0.9)		(-1.8)	(-2.4)	(-0.6)
$Crowd_{q-1}$	-0.50	-0.15	0.28		-0.58	-0.12	0.33
	(-3.4)	(-1.1)	(1.0)		(-4.3)	(-1.3)	(1.6)
$\hat{\sigma}_{Crowd}$	4.61	1.83	0.14		6.61	1.60	-0.13
	(2.3)	(0.8)	(0.2)		(3.7)	(0.8)	(-0.2)
Realized vol.	-0.29	-0.34	-0.32		-0.25	-0.30	-0.27
of Mom rets.	(-1.6)	(-1.8)	(-1.7)		(-2.2)	(-2.5)	(-2.3)
Adj-rsquare	12.1%	10.1%	9.3%		37.7%	33.3%	32.3%

The controls for the dynamic FF3 are not tabulated. T-statistics are calculated with White standard errors.

Predicting momentum crashes

The table contains the coefficients of probit models for the chance of a crash (10% left tail).

Dependent variable:	cumulative returns			dyna	mic FF3 r	esiduals
4qtr Crowding measure:	GTW	BEK	BEKcap	GTW	BEK	BEKcap
$\Delta Crowd_{q}$	12.9 (1.1)	20.2 (2.1)	14.6 (1.1)	16.5 (1.3)		12.3 (0.8)
$[1ex] \ Crowd_{q\text{-}1}$	16.1 (2.0)	10.9 (2.0)	-2.6 (-0.3)	21.6 (2.2)		-4.5 (-0.5)
$\hat{\sigma}_{Crowd}$	57.1 (0.4)	48.2 (0.8)	5.7 (0.2)	-186.7 (-1.3)		28.1 (1.2)
[1ex] Realized vol. of Mom rets.	14.8 (3.9)	12.8 (4.1)	11.4 (3.8)	11.7 (3.8)		9.9 (3.3)

The table contains the coefficients of probit models for the chance of a crash (10% left tail). Square brackets indicate Wald test for difference in tails [p-values].

Dependent variable:	cum	ulative re	eturns		dynam	nic FF3 re	esiduals
4qtr Crowding measure:	GTW	BEK	BEKcap	_	GTW	BEK	BEKcap
$\Delta Crowd_q$	12.9	20.2	14.6		16.5	20.7	12.3
	(1.1)	(2.1)	(1.1)		(1.3)	(2.0)	(0.8)
	[0.45]	[0.12]	[0.72]		[0.92]	[0.58]	[0.99]
[1ex] Crowd _{q-1}	16.1	10.9	-2.6		21.6	10.4	-4.5
	(2.0)	(2.0)	(-0.3)		(2.2)	(1.9)	(-0.5)
	[0.44]	[0.13]	[0.51]		[0.91]	[0.10]	[0.34]
$\hat{\sigma}_{Crowd}$	57.1	48.2	5.7		-186.7	86.0	28.1
	(0.4)	(0.8)	(0.2)		(-1.3)	(1.4)	(1.2)
	[0.28]	[0.17]	[0.56]		[0.90]	[0.07]	[0.71]
[1ex] Realized vol.	14.8	12.8	11.4		11.7	11.9	9.9
of Mom rets.	(3.9)	(4.1)	(3.8)		(3.8)	(3.8)	(3.3)
	[0.00]	[0.00]	[0.00]		[0.00]	[0.00]	[0.00]

Higher moments of momentum returns: Tercile portfolios, sort on [column header], T1 low

		ΔCrow	/d		Crowo	1	Realized vol.
	GTW	BEK	BEKcap	GTW	BEK	BEKcap	of Mom rets.
Volati	lity						
Τ1	25.7	27.9	32.0	32.6	33.5	21.8	15.3
T2	26.3	27.0	18.5	26.5	19.3	26.3	17.3
Т3	25.9	22.9	25.7	16.5	23.2	29.4	38.7
	(0.0)	(-1.0)	(-1.2)	(-3.5)	(-2.2)	(1.8)	(5.7)
Skewn	ess						
Τ1	-1.8	-2.5	-1.2	-1.7	-2.0	-0.4	-0.3
T2	-1.2	-1.3	-0.5	-1.1	0.0	-2.4	-0.3
Т3	-1.5	0.2	-2.1	-0.6	0.0	-1.2	-1.2
	(0.2)	(4.1)	(-0.8)	(1.8)	(3.3)	(-0.9)	(-2.0)
Kurtos	sis						
Τ1	15.4	15.4	8.5	10.5	10.5	4.7	4.0
T2	9.0	8.5	4.2	8.2	3.8	15.3	4.1
Т3	10.5	5.4	14.1	4.7	5.6	9.7	6.5
	(-1.0)	(-3.6)	(1.2)	(-2.8)	(-2.4)	(1.7)	(2.1)

Crowding and momentum volatility

Dependent variable is realized volatility of quarterly momentum returns/residuals.

Dependent variable:	vol of returns			vol of dynamic FF3 residuals				
Crowding measure:	GTW	BEK	BEKcap	GTW	BEK	BEKcap		
$\Delta Crowd_q$	-0.06	-0.16	-0.01	-0.05	-0.11	-0.10		
	(-0.4)	(-0.9)	(-0.0)	(-0.5)	(-0.6)	(-0.4)		
$Crowd_{q-1}$	-0.05	-0.10	0.02	-0.10	-0.09	0.00		
	(-0.5)	(-1.8)	(0.2)	(-1.2)	(-2.0)	(0.0)		
$\hat{\sigma}_{Crowd}$	-1.69	0.74	0.71	-0.75	0.51	0.56		
	(-0.9)	(0.6)	(1.5)	(-0.6)	(0.6)	(1.9)		
Realized vol.	0.77	0.77	0.76	0.74	0.74	0.73		
of Mom rets.	(9.1)	(7.3)	(7.8)	(9.1)	(6.7)	(7.5)		
Adj-rsquare	63.5%	63.4%	63.8%	59.5%	59.2%	59.8%		

T-statistics are calculated with Newey-West standard errors with 3 lags.

Dependent variables are 4qtr crowding measures. Regress on past characteristics of momentum returns.

Crowding horizon:		4qtr	
Crowding measure:	GTW	BEK	BEKcap
1yr return _{q-1}	0.39	0.28	0.28
	(2.6)	(1.1)	(2.3)
1yr return _{q-5}	0.53	0.49	0.12
	(3.0)	(2.2)	(1.1)
1yr volatility _{q-1}	-0.38	-0.38	-0.03
	(-4.4)	(-2.9)	(-0.6)
1yr volatility _{q-5}	0.19	0.08	-0.09
	(2.4)	(0.6)	(-1.2)
Adj-rsquare	18.9%	16.3%	18.0%

T-statistics with Newey-West standard errors, 3 lags.

- Crowding matters (first moment),
 - $\rightarrow\,$ though it seems best characterized with the count of momentum-trading institutions rather than dollars invested.
 - $\rightarrow\,$ this is consistent with trading intensity chosen to optimize against crowding effects.
- The crowd seems to react to *and anticipate* higher moments of momentum (volatility, skewness, kurtosis).
 - $\rightarrow\,$ Consistent with model's prediction: uncertain crowding need not generate tail risk...
 - ightarrow and empirically does not seem to generate tail risk .

Further analysis

Thank you very much for your attention.

- D. Abreu and M. K. Brunnermeier. Bubbles and crashes. *Econometrica*, 71(1):173–204, 2003.
- P. Barroso and P. Santa-Clara. Momentum has its moments. *Journal* of *Financial Economics*, 116(1):111–120, 2015.
- B. Chabot, E. Ghysels, and R. Jagannathan. Momentum trading, return chasing, and predictable crashes. NBER Working Paper, 2014.
- K. Daniel and T. J. Moskowitz. Momentum crashes. *Journal of Financial Economics*, 122(2):221 247, 2016.
- B. D. Grundy and J. S. M. Martin. Understanding the nature of the risks and the source of the rewards to momentum investing. *The Review of Financial Studies*, 14(1):29, 2001.

- S. Huang. The momentum gap and return predictability. *Working Paper SSRN*, 2015.
- D. Lou and C. Polk. Comomentum: Inferring arbitrage activity from return correlations. Working Paper London School of Economics, 2013.
- M. Piazzesi and M. Schneider. Momentum traders in the housing market: Survey evidence and a search model. *American Economic Review*, 99(2):406–11, 2009.
- J. C. Stein. Presidential address: Sophisticated investors and market efficiency. *The Journal of Finance*, 64(4):1517–1548, 2009.

Direct versus indirect crowding measures

	Mom Gap			ort	hogonal	to	
		ΔMom	Win		Crowd		Realized vol.
		Inst	Inst	GTW	BEK	BEKcap	of Mom rets.
Volati	ility						
Τ1	12.8	12.2	13.5	12.7	13.2	13.3	21.0
T2	19.2	19.9	18.7	19.4	19.0	19.2	17.8
Т3	38.6	38.5	38.6	38.6	38.6	38.4	35.6
	(6.4)	(6.7)	(6.2)	(6.6)	(6.4)	(6.4)	(3.2)
Skewr	ness						
Τ1	-0.3	-0.4	-0.3	-0.3	-0.2	-0.5	-0.7
T2	0.0	0.0	0.0	-0.1	0.0	0.3	-0.2
Т3	-1.3	-1.3	-1.3	-1.3	-1.3	-1.3	-1.5
	(-2.4)	(-2.2)	(-2.6)	(-2.5)	(-2.7)	(-2.0)	(-1.4)
Kurto	sis						
Τ1	3.3	3.4	3.2	3.4	3.4	3.4	6.4
T2	3.8	3.7	4.2	3.8	3.9	4.8	4.8
Т3	6.6	6.6	6.6	6.6	6.6	6.5	8.4
	(2.9)	(2.8)	(3.1)	(2.9)	(3.0)	(2.8)	(1.1)

back