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Post-crisis interest rate markets: an overview

A universe of rates: OIS, Eonia, Libor/Euribor for di↵erent tenors...
...and new reference rates will be soon introduced.

Pre-crisis market environment (“textbook situation”): di↵erent rates are
related by simple no-arbitrage relations and compounding rules.

Since the 2007-2008 crisis, the credit and funding/liquidity risks implicit in
interbank transactions have deeply a↵ected fixed income markets:

I interbank risk is typically increasing in the tenor (length of the loan).

I Filipović & Trolle (2013), Gallitschke et al. (2017).

In recent years, also as a consequence of expansionary monetary policies,
interest rates have been persistently low (and even negative).

Consequences for financial modeling:
I interbank (Ibor) rates are risky;
I classical no-arbitrage relations do not hold.
I persistently low/negative interest rates.

Multiple interest rate curves, where each interest rate (yield) curve is constructed
from products depending on a specific tenor (1W, 1M, 3M, 6M, 1Y).

) this is reflected by the presence of spreads between Ibor and OIS rates.
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I Filipović & Trolle (2013), Gallitschke et al. (2017).

In recent years, also as a consequence of expansionary monetary policies,
interest rates have been persistently low (and even negative).

Consequences for financial modeling:
I interbank (Ibor) rates are risky;
I classical no-arbitrage relations do not hold.
I persistently low/negative interest rates.

Multiple interest rate curves, where each interest rate (yield) curve is constructed
from products depending on a specific tenor (1W, 1M, 3M, 6M, 1Y).

) this is reflected by the presence of spreads between Ibor and OIS rates.

Claudio Fontana (University of Padova, Italy) 12th Financial Risks International Forum, Paris, 18-19 March 2019 2 / 15



Post-crisis interest rate markets: an overview

A universe of rates: OIS, Eonia, Libor/Euribor for di↵erent tenors...
...and new reference rates will be soon introduced.

Pre-crisis market environment (“textbook situation”): di↵erent rates are
related by simple no-arbitrage relations and compounding rules.

Since the 2007-2008 crisis, the credit and funding/liquidity risks implicit in
interbank transactions have deeply a↵ected fixed income markets:

I interbank risk is typically increasing in the tenor (length of the loan).
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Euribor - OIS spreads

0.0

0.5

1.0

1.5

2.0

2.5

2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

Eu
rib

or
−E

on
ia

 O
IS

 S
pr

ea
ds

 (%
)

Spreads
12m
9m
6m
3m
1m

Additive Euribor−Eonia OIS spreads for different tenors from 03/2005−03/2017

Source: ECB.

Claudio Fontana (University of Padova, Italy) 12th Financial Risks International Forum, Paris, 18-19 March 2019 3 / 15

Claudio Fontana
 



Multiple curve modeling

Empirical features of spreads

generally positive;

longer tenors are associated to higher spreads;

strong comovements and common upward jumps;

volatility clustering.

The modeling approach

Continuous-state branching processes with immigration (CBI processes) to model

OIS short rate;

multiplicative spreads between Ibor rates and OIS rates.

Main properties

Consistent with empirical features;

order relations between Ibor rates associated to di↵erent tenors;

analytical tractability and e�cient valuation formulae () calibration);

automatic fit to the initially observed term structures.

Claudio Fontana (University of Padova, Italy) 12th Financial Risks International Forum, Paris, 18-19 March 2019 4 / 15



Multiple curve modeling

Empirical features of spreads

generally positive;

longer tenors are associated to higher spreads;

strong comovements and common upward jumps;

volatility clustering.

The modeling approach

Continuous-state branching processes with immigration (CBI processes) to model

OIS short rate;

multiplicative spreads between Ibor rates and OIS rates.

Main properties

Consistent with empirical features;

order relations between Ibor rates associated to di↵erent tenors;

analytical tractability and e�cient valuation formulae () calibration);

automatic fit to the initially observed term structures.

Claudio Fontana (University of Padova, Italy) 12th Financial Risks International Forum, Paris, 18-19 March 2019 4 / 15



Multiple curve modeling

Empirical features of spreads

generally positive;

longer tenors are associated to higher spreads;

strong comovements and common upward jumps;

volatility clustering.

The modeling approach

Continuous-state branching processes with immigration (CBI processes) to model

OIS short rate;

multiplicative spreads between Ibor rates and OIS rates.

Main properties

Consistent with empirical features;

order relations between Ibor rates associated to di↵erent tenors;

analytical tractability and e�cient valuation formulae () calibration);

automatic fit to the initially observed term structures.

Claudio Fontana (University of Padova, Italy) 12th Financial Risks International Forum, Paris, 18-19 March 2019 4 / 15



An (incomplete) overview of modelling approaches

Fundamental approaches:
Crépey and Douady (2013), Filipović and Trolle (2013), Chang and Schlögl (2014),

Gallitschke et al. (2017), Alfeus et al. (2018).

Short rate models:
Kijima et al. (2009), Kenyon (2010), Morino and Runggaldier (2014), Grasselli and

Miglietta (2016), Grbac et al. (2016), Cuchiero - F - Gnoatto (2019).

Libor market models and forward models:
Mercurio (2010,...,2018), Grbac et al. (2015), Papapantoleon and Wardenga

(2018), Eberlein et al. (2018).

HJM models:
Moreni and Pallavicini (2010), Pallavicini and Tarenghi (2010), Fujii et al.

(2010,2011), Crépey et al. (2012,2015), CFG (2016).

Rational models:
Nguyen and Seifried (2015), Crépey et al. (2016), Filipović et al. (2017), Macrina

and Mahomed (2018).

Textbooks: Bianchetti and Morini (2013), Grbac and Runggaldier (2015).

Precursory works: Jarrow and Turnbull (1996), Douady and Jeanblanc (2002).
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Ibor and OIS rates

L(t, t, �): Ibor rate at date t for the period [t, t + �];
we consider a finite set D of tenors �1 < . . . < �m, for m 2 N.

OIS rate: fair swap rate for an Overnight Indexed Swap
(proxy of risk-free rate in market practice).

From OIS rates we can compute
I the term structure of OIS zero-coupon bond prices: T 7! B(t,T );

I simply compounded OIS forward rates

LOIS
(t, t, �) := 1

�

✓
1

B(t, t + �)
� 1

◆
.

In the post-crisis market: L(t, t, �) 6= LOIS
(t, t, �)

We denote by (rt)t�0 the short rate associated to OIS zero-coupon bonds.
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Multiplicative spreads

Besides rt , we take spot multiplicative spreads as the main modeling quantities:

S�(t, t) :=
1 + �L(t, t, �)

1 + �LOIS(t, t, �)
, for � 2 D.

Directly observable from rates quoted on the market;

market expectation at date t of the interbank risk over [t, t + �];

typical market behavior:
I S�i (t, t) � 1, for all i = 1, . . . ,m;

I S�i (t, t)  S�j (t, t), for all i , j = 1, . . . ,m such that �i < �j .

Let also define forward multiplicative spreads:

S�(t,T ) :=
1 + �L(t,T , �)

1 + �LOIS(t,T , �)
, for � 2 D and 0  t  T ,

where L(t,T , �) is the forward Ibor rate (fair rate of a FRA).

) compare with today’s talk by Ernst Eberlein.
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A flow of CBI processes

Let (⌦,F ,F,Q) be a filtered probability space supporting:

a white noise W (ds, du) on (0,+1)2 with intensity ds du;
a Poisson time-space random measure M(ds, dz , du) on (0,+1)3 with
intensity ds ⇡(dz) du and compensator eM(ds, dz , du).

For each i = 1, . . . ,m, let Y i = (Y i
t )t�0 be the unique strong solution of

Y i
t = y i

0 +

Z t

0

(�(i)� bY i
s )ds + �

Z t

0

Z Y i
s

0

W (ds, du)

+ ⌘

Z t

0

Z +1

0

Z Y i
s�

0

z eM(ds, dz , du),

where

� : {1, . . . ,m} ! R+, with �(i)  �(i + 1);
(b,�, ⌘) 2 R3

+;
⇡ is a tempered alpha-stable measure, explicitly given by

⇡(dz) =
1

�(�↵) cos(⇡↵/2)

e�✓z

z1+↵
1{z>0}dz ,

for some parameters ↵ 2 (1, 2) and ✓ > ⌘.

{Y i
; i = 1, . . . ,m} is a flow of CBI processes (see Dawson & Li, 2012).

Claudio Fontana (University of Padova, Italy) 12th Financial Risks International Forum, Paris, 18-19 March 2019 8 / 15



A flow of CBI processes

Let (⌦,F ,F,Q) be a filtered probability space supporting:

a white noise W (ds, du) on (0,+1)2 with intensity ds du;
a Poisson time-space random measure M(ds, dz , du) on (0,+1)3 with
intensity ds ⇡(dz) du and compensator eM(ds, dz , du).

For each i = 1, . . . ,m, let Y i = (Y i
t )t�0 be the unique strong solution of

Y i
t = y i

0 +

Z t

0

(�(i)� bY i
s )ds + �

Z t

0

Z Y i
s

0

W (ds, du)

+ ⌘

Z t

0

Z +1

0

Z Y i
s�

0

z eM(ds, dz , du),

where

� : {1, . . . ,m} ! R+, with �(i)  �(i + 1);
(b,�, ⌘) 2 R3

+;
⇡ is a tempered alpha-stable measure, explicitly given by

⇡(dz) =
1

�(�↵) cos(⇡↵/2)

e�✓z

z1+↵
1{z>0}dz ,

for some parameters ↵ 2 (1, 2) and ✓ > ⌘.

{Y i
; i = 1, . . . ,m} is a flow of CBI processes (see Dawson & Li, 2012).

Claudio Fontana (University of Padova, Italy) 12th Financial Risks International Forum, Paris, 18-19 March 2019 8 / 15



Modeling multiple curves via a flow of CBI processes

Given the flow of CBI processes Y = {Y i ; i = 1, . . . ,m}, we specify the OIS short
rate and spot multiplicative spreads as

rt = `(t) + µ>Yt ,

log S�i (t, t) = ci (t) + Y i
t ,

for all t � 0 and i = 1, . . . ,m, where ` : R+ ! R and ci : R+ ! R+.

The functions ` and ci are chosen to fit the term structures at t = 0;

spreads are by construction greater than one;

each process Y i is a self-exciting mean-reverting process;

the processes {Y i ; 1, . . . ,m} are driven by the same sources of randomness;

strong dependence among di↵erent spreads and OIS rates;

spreads have a mutually exciting behavior: a large value of S�i (t, t) increases
the likelihood of upward jumps of all spreads with tenor �j > �i .

Proposition (monotonicity of spreads)

Suppose that ci (t)  ci+1(t) and y i
0
 y i+1

0
, for all i = 1, . . . ,m � 1 and t � 0.

Then S�i (t,T )  S�i+1(t,T ) a.s., for all i = 1, . . . ,m � 1 and 0  t  T < +1.
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A sample path: OIS rate

Compare also with Jiao et al. (2017), sovereign interest rate modeling.
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A sample path: multiplicative spreads
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The a�ne property

CBI processes belong to the class of a�ne processes (Du�e et al., 2003):

E
⇥
e�pY i

t
⇤
= exp

✓
�y i

0v(t, p)� �(i)

Z t

0

v(s, p) ds

◆
, for all t � 0,

where the function v(·, p) is given by the unique solution to the ODE

@tv(t, p) = ��
�
v(t, p)

�
, v(0, p) = p,

with

�(z) = bz +
�2

2
z2 +

✓↵ + z↵⌘✓↵�1 � (z⌘ + ✓)↵

cos(⇡↵/2)
, for z � �✓/⌘.

By relying on the a�ne property, we study the following features of the model:

existence of exponential moments of Y i . In particular,

b � �2

2

✓

⌘
+ ⌘

(1� ↵)✓↵�1

cos(⇡↵/2)
=) E[eY

i
T ] < +1 for all T � 0.

0 is an inaccessible boundary for Y i if and only if �(i) � �2/2;

characterization of the ergodic distribution of the flow.
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OIS bond prices and forward multiplicative spreads

The a�ne property is crucial for pricing applications:
1 OIS zero-coupon bond prices are given by

B(t,T ) = exp
�
A0(t,T ) + B0(T � t)>Yt

�

2 forward multiplicative spreads are given by

S�i (t,T ) = exp
�
Ai (t,T ) + Bi (T � t)>Yt

�
,

for all i = 1, . . . ,m and 0  t  T < +1.

These formulae allow for a direct evaluation of linear interest rate derivatives:

Forward Rate Agreements:

⇧FRA(t;T , �i ,K ,N) = N
�
B(t,T )S�i (t,T )� (1 + �iK )B(t,T + �i )

�
;

Interest Rate Swaps and Basis Swaps;

Convexity adjustments of the form E[L(T ,T , �i )|Ft ]� L(t,T , �i ).
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Caplet pricing

Non-linear interest rate derivatives can be e�ciently priced by combining

knowledge of the characteristic function of the CBI flow;

Fourier inversion techniques.

Consider a Caplet with payo↵ (L(T ,T , �i )� K )+ delivered at time T + �i :

⇧CPL(t;T , �i ,K ) = B(t,T + �i )ET+�i
h�
eX

i
T � K̄i

�+���Ft

i
,

where X i
T := log(S�i (T ,T )/B(T ,T + �i )) and K̄i := 1 + �iK . Let

�i
t,T (⇣) := B(t,T + �i )ET+�i [e i⇣X

i
T |Ft ]

be the modified characteristic function of X i
T , which can be explicitly computed.

Then

⇧CPL(t;T , �i ,K ) = R i
t,T (K̄i ) +

1

⇡

Z 1�i✏

0�i✏
Re

 
e�i⇣ log(K̄i )

�i
t,T (⇣ � 1)

�⇣(⇣ � 1)

!
d⇣,

where R i
t,T (K̄i ) is a (possibly null) residue term depending on ✏.

Compare also with Lee (2004), Cuchiero et al. (2019).
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Conclusions and outlook

CBI processes allow to reproduce most of the empirical features of
multi-curve spreads in post-crisis interest rate markets:

I volatility clustering;

I strong comovements of spreads;

I persistence of low/negative rates.

the a�ne property leads to e�cient valuation techniques;

Work in progress: calibration to market data on caps/floors volatility surface,
with two tenors (OIS, 3M and 6M) by FFT and quantization methods.

Thank you for your attention!
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