Portfolio Rho-presentativity

Tristan Froidure, Khalid Jalalzai and Yves Choueifaty

March 18, 2019

Maximally Rho-presentative Portfolios

Applications

Conclusion

Introduction and Outline

Rho-presentative Portfolios

Maximally Rho-presentative Portfolios

Applications

Conclusion

Maximally Rho-presentative Portfolios

Applications

Conclusion

Setup and notations

Setup: Investment universe of n risky assets with covariance matrix $\Sigma \succ 0$.

- Π : set of unlevered long-short portfolios (ℓ^1 ball in \mathbb{R}^n).
- Π^+ : set of unlevered long-only portfolios (standard simplex).

Standard Portfolios:

EW: the Equally-Weighted, $w_{ew} = 1/n$. EVW: the Equal-Volatility-Weighted, $w_{evw} = \frac{1 \oslash \sigma}{\langle 1, 1 \oslash \sigma \rangle}$. ERC: the Equal Risk Contribution w_{erc} solves in Π^+

$$w_{erc} \odot \Sigma w_{erc} = rac{\sigma(w_{erc})^2}{n} \mathbf{1}$$
 (due to $\sigma(w)^2 = \langle \mathbf{1}, w \odot \Sigma w \rangle$).

MV: the Minimum Variance w_{mv} minimizes $\sigma(w)$ over Π^+ . MDP: the Most Diversified Portfolio w^* maximizes over Π^+ the Diversification Ratio

$$DR(w) := rac{\langle w, \sigma
angle}{\sigma(w)} \ \, (\mathsf{due to} \ \sigma(w) \leq \langle w, \sigma
angle).$$

Maximally Rho-presentative Portfolios

Applications

Conclusion

Rho-presentative Portfolios

Froidure, Jalalzai and Choueifaty / Portfolio Rho-presentativity 4 / 19

Maximally Rho-presentative Portfolios

Applications

Conclusion

An Alternative Portfolio Representation

The usual representation through weights has limitations: not holding any financial stock does not necessarily mean no exposure to the financial sector.

Definition: Consider the correlation spectrum of a portfolio

 $\rho(w)_i := \varrho(w, e_i)$

which is the vector of correlations of the portfolio w to *all* assets e_i .

- ▶ well-defined for any long-short portfolio $w \neq 0$ as $\Sigma \succ 0$.
- equivalent to weights as $\rho: \Pi \to \mathcal{E} := \{ || \cdot ||_{C^{-1}} = 1 \}$ is bijective.
- measures a normalized and signed exposure of the portfolio w to each asset of the universe, or how "well" each asset is represented in the portfolio.

Rho-presentative Portfolios: Definition and Properties

This alternative representation naturally leads to a new class of portfolios:

Definition

Given an investment universe of risky assets, a portfolio is:

- ▶ Representative if $w \succ 0$,
- ▶ Rho-presentative if $\rho(w) \succ 0$.

Proposition

Representative, not Rho-presentative in general:

Cap-weighted indices, EW, EVW.

Rho-presentative portfolios:

ERC, MV, MDP.

Key Idea: maximize the *overall* exposure of a portfolio to all assets.

Maximally Rho-presentative Portfolios

Applications

Conclusion

Maximally Rho-presentative Portfolios

Maximally Rho-presentative Portfolios

Definition of Maximally Rho-presentative Portfolios

Definition: an unlevered portfolio $w_f \in \Pi$ is maximally Rho-presentative if there is an aggregation $f : \mathbb{R}^n \to \mathbb{R}$ such that

 $w_f \in \operatorname*{argmax}_{\Pi} f \circ \rho$

with f that is

- ▶ increasing: if $\rho(w) \succ \rho(y)$ then $f \circ \rho(w) > f \circ \rho(y)$ to advantage portfolios with higher exposures.
- concave: consistent with

 $w_{\theta} \in]w_0, w_1[\implies \rho(w_{\theta}) \in d_{\theta} \times]\rho(w_0), \rho(w_1)[\quad (\text{with } d_{\theta} > 1).$

symmetric: aggregated exposure is invariant under permutation.

Existence: as f is concave on \mathbb{R}^n , the existence follows from the continuity of $f \circ \rho$ and the fact that ρ is homogeneous of degree 0.

Uniqueness: if f is increasing and concave, the objective of a strict convex combination can always be improved.

Characterization of Maximally Rho-presentative Portfolios

We denote:

- \blacktriangleright v^{\uparrow} (resp. v^{\downarrow}) the sorted v with the max at the top (resp. bottom)
- ▶ Volatility adjusted weights $\phi: \Pi^+ \to \Pi^+$ defined by $\phi(w) := \frac{1}{\langle w, \sigma \rangle} w \odot \sigma$.

Theorem

The set $\mathcal R$ of unlevered Maximally Rho-presentative portfolios of n assets

$$\mathcal{R} = \left\{ w \in \Pi^+, \langle \phi(w)^{\uparrow}, \rho(w)^{\downarrow} \rangle = \langle \phi(w), \rho(w) \rangle \right\}$$

is a finite union of polytopes, with $\phi\left(\mathcal{R}
ight)$ having a small Lebesgue measure

$$\lambda_{n-1}\left(\phi\left(\mathcal{R}\right)\right) \leq \frac{1}{n!}\lambda_{n-1}\left(\Pi^{+}\right).$$

Lemma

For any
$$y \in \Pi \setminus \Pi^+$$
, there exists $w \in \Pi^+$ such that $ho(w) \succ
ho(y).$

Other Properties of Maximally Rho-presentative Portfolios

Proposition

A Maximally Rho-presentative w is:

weakly Rho-presentative as its average exposure is positive with

$$n^{-1}\langle \rho(w), \mathbf{1} \rangle \ge DR^{-1}(w) \ge DR(w^*)^{-1} > 0.$$

▶ fairly diversified, and positively correlated to a special long-only portfolio:

$$DR(w) \ge \frac{DR(w_{evw})}{\varrho(w, w_{evw})} > 0.$$

 \implies EVW w_{evw} and MDP w^* are candidates for being max Rho-presentative.

Maximally Rho-presentative Portfolios

Applications

Conclusion

Applications

Froidure, Jalalzai and Choueifaty / Portfolio Rho-presentativity 11 / 19

A New Framework for Constructing and Comparing Portfolios

Investment Strategy	Primal approach: Portfolios maximize	Dual approach: Weights	Long		max
Name	$f \circ \rho(w) =$	proportional to	Only	ho-pr	ho- pr
EVW	$\langle \rho(w), 1 \rangle$	$1 \oslash \sigma$	×		×
ERC	$\langle \ln(\rho(w)), 1 \rangle$	$w_i(\Sigma w)_i = \sigma^2(w)/n$	×	×	×
MDP	$\min ho(w)$	$\operatorname{argmax}_{\Pi^+} DR$	×	×	×
Mean-Var $ ho$	$\mathbb{E}(\rho(w)) - \frac{\lambda}{2} \mathbb{V}ar(\rho(w))$		×		$\lambda \in [0, 1)$

where ρ -pr stands for *Rho-presentative*.

- ► The EVW, ERC and MDP are maximally Rho-presentative.
- \blacktriangleright Primal objectives are comparable \implies unified financial interpretation.
- Mean-Var trade off: maximize average vs. dispersion of exposures.

Maximally Rho-presentative Portfolios

On the Impact of Maximum Weight Constraints

When nearing implementation, practitioners use maximum weights $\frac{1}{r}$:

- when imposed by regulators,
- when using objective functions subject to estimation uncertainty.

Theorem

$$\underset{\substack{\langle w, \mathbf{1} \rangle = 1 \\ 0 \le w_i \le \frac{1}{r}}{\operatorname{argmin}} \sigma(w) = \underset{\langle w, \mathbf{1} \rangle = 1}{\operatorname{argmin}} \sigma_{\Sigma_{\lambda,\mu}}(w) = \underset{w \in \Pi}{\operatorname{argmax}} \underbrace{\frac{1}{r} \sum_{i=1}^{r} \left[(\rho(w) \odot \sigma)^{\downarrow} \right]_{i}}_{\mathbf{a} \text{ ``robust'' min}(\rho(w) \odot \sigma)}.$$

identifies exactly the impact of maximum weights on the objective.

 extends a result by Jagannathan and Ma (2003), that provided an interpretation of the second minimization as using a robust objective.

Investment Strategy Name	Primal approach: Portfolios maximize $f \circ \rho(w) =$	Dual approach: Weights proportional to	Long Only	<i>p</i> -pr	max ρ-pr
Constrained MV	$\sum_{i=1}^r \left[(\rho(w) \odot \sigma)^{\downarrow} \right]_i$	$\operatorname{argmin}_{\Pi_{1}^{+}} \sigma_{\Sigma}$	×		
Constrained MDP	$\sum_{i=1}^{r} \left[(\rho(w))^{\downarrow} \right]_i$	$\operatorname{argmax}_{\Pi_{\sigma,r}^+}^{1,r} DR$	×		×

Realized Maximally Rho-presentativity

Goal: Identify Maximally Rho-presentative funds from their observed returns only.

Funds that are max Rho-presentative necessarily satisfy:

$$DR(w) \ge DR(w_{evw})/\varrho(w, w_{evw}).$$

▶ Problem: portfolio composition needed for evaluating $DR(w) = \frac{\langle w, \sigma \rangle}{\sigma(w)}$.

Solution: Let $\bar{w} = \Sigma^{-1} \sigma$ that maximizes the DR over long-short ptfs.

$$\forall w \in \Pi, \ DR(w) = DR(\bar{w})\varrho(\bar{w},w) \implies$$
 measure of realized DR.

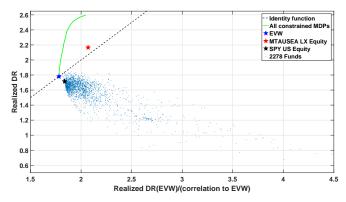
TOBAM

Maximally Rho-presentative Portfolios

Applications

Conclusion

Realized Maximally Rho-presentativity



2278 US equity funds over Jan13-Mar17 : 80% of total US equity funds NAVs.

- The fund in black replicates the S&P500 index.
- Forward looking constrained MDPs and EVW.
- ▶ The fund in **red** targets the highest investable *DR*.

Maximally Rho-presentative Portfolios

Applications

Conclusion

Conclusion

Froidure, Jalalzai and Choueifaty / Portfolio Rho-presentativity 16 / 19

Maximally Rho-presentative Portfolios

Applications

Conclusion

Key Concepts and Results

- The correlation spectrum provides an alternative and equivalent way of representing portfolios.
- Rho-presentative portfolios (ex: MV, MDP, ERC) allow investors to be positively exposed to all assets without being necessarily invested in all of them.
- Maximally Rho-presentative portfolios maximize under no particular constraint their aggregate exposure to all assets, as measured by a function f that is symmetric, concave and increasing.
- Such portfolios are long-only, and a basic characterization was provided, that is independent of f. They form a tiny subset of long-only portfolios, where we recovered well-known and possibly constrained investment strategies.
- > This tiny set has attracted significant investments for more than a decade.

Maximally Rho-presentative Portfolios

Applications

Conclusion

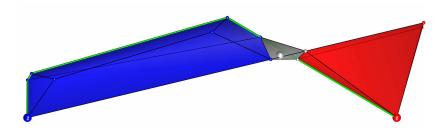
Key Applications

- The study of Maximally Rho-presentative portfolios leads to a unifying framework for constructing portfolios. It encompasses EW, EVW, ERC, constrained MV and MDP.
- We extend previous results of Jagannathan and Ma, by identifying explicitly the impact of maximum weight constraints on optimized portfolios such as the MV and MDP.
- We showed how to measure ex-post the Diversification and Rho-presentativity of funds without knowing their composition.
- Beyond their financial implications, these results may be useful in other fields where correlations are used to measure interactions.

Maximally Rho-presentative Portfolios

Applications

Conclusion



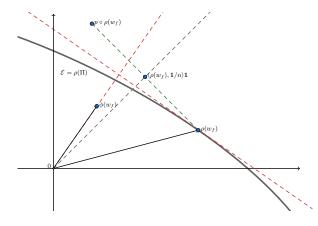
Thank you! Questions?

Froidure, Jalalzai and Choueifaty / Portfolio Rho-presentativity 19 / 19

Sketch of Proof of the Main Theorem

Step 1: $\mathcal{R} \subset \Pi^+$: exhibit a feasible $w \in \Pi^+$ for $\operatorname{argmin}_{w \in \Pi^+, \rho(w) \succeq \rho(y)} 1$, relaxed to $\operatorname{argmin}_{w \succeq 0, \Sigma w \succeq \Sigma y} \sigma(w)$ (constructive).

 $\begin{array}{lll} \textbf{Step 2:} & w \in \mathcal{R} \implies \langle \phi(w)^{\uparrow}, \rho(w)^{\downarrow} \rangle = \langle \phi(w), \rho(w) \rangle \text{:} \\ \text{if not, } \exists p \in \mathfrak{S}_n \text{ with } \langle \phi(w), p \circ \rho(w) \rangle < \langle \phi(w), \rho(w) \rangle. \end{array}$



Sketch of Proof of the Main Theorem

Step 3:
$$\langle \phi(w)^{\uparrow}, \rho(w)^{\downarrow} \rangle = \langle \phi(w), \rho(w) \rangle \implies w \in \mathcal{R}$$
:
 $\forall w \in \Pi^+, z \mapsto f_w(z) := \langle \phi(w)^{\uparrow}, z^{\downarrow} \rangle$ is increasing, concave, sym and $\forall z \neq 0$,
 $f_w \circ \rho(z) \le \langle \phi(w), \rho(z) \rangle \le \langle \phi(w), \rho(w) \rangle = \langle \phi(w)^{\uparrow}, \rho(w)^{\downarrow} \rangle = f_w \circ \rho(w)$.
Step 4: $\lambda_{\pi-1}(\mathcal{R}) \le \lambda_{\pi-1}(\Pi^{+\uparrow})$ assuming $\sigma = 1$:

We have
$$\forall (w, p) \in \mathcal{R} \times \mathfrak{S}_n$$
, $p(w) \in \mathcal{R} \implies p(w) = w$, thanks to:
 $f_w \circ \rho(z) \leq \langle p(w), \rho(z) \rangle \leq \langle p(w), \rho(p(w)) \rangle = \langle p(w)^{\uparrow}, \rho(p(w))^{\downarrow} \rangle = f_w \circ \rho(p(w)).$
Then, denoting $\Delta_p := \mathcal{R} \cap \{ w \in \mathbb{R}^n, p(w) = w^{\uparrow} \}$,

$$\lambda_{n-1}\left(\mathcal{R}\right) = \sum_{p \in \mathfrak{S}_n} \lambda_{n-1}\left(\Delta_p\right) = \sum_{p \in \mathfrak{S}_n} \lambda_{n-1}\left(p\left(\Delta_p\right)\right) \le \lambda_{n-1}\left(\Pi^{+\uparrow}\right)$$

A Not-So-Typical Saddle-Point Problem

$$\Sigma = \begin{pmatrix} 1.0 & -0.3 & -0.4 \\ -0.3 & 1.0 & -0.5 \\ -0.4 & -0.5 & 1.0 \end{pmatrix} \succ 0$$

We obtained in our "Primal-Dual" framework that:

TOBA

 $\min_{w \in \Pi^+} \sigma(w) = \max_{w \in \mathbb{R}^n \setminus \{0\}} \min \rho(w) = \max_{w \in \mathbb{R}^n \setminus \{0\}} \min_{\theta \in \Pi^+} \varrho(w, \theta).$ $\min_{\theta \in \Pi^+} \varrho(w, \theta)$ $\sigma(w)$ $\min \rho(w)$ 0.6 0.4 0.2 0.8 0.8 0.8 0.6 0.6 0.6 0.4 0.4 0.4 0.2 0.2 0.2 0 0.6 0.8 0.8 ° . 0.2 04 0.6 0.8

Solves an *a priori* difficult problem (not quasi concave-quasi convex).
 minimizing a quadratic form over Π⁺ is equivalent to solve an unconstrained problem. Can we include more constraints?

▶ $\min_{\theta \in \Pi^+} \varrho(w, \theta) < \min \rho(w)$ may happen if w is not Rho-presentative.

Froidure, Jalalzai and Choueifaty / Portfolio Rho-presentativity 22 / 19